MazeGen.java
Jump to navigation
Jump to search
<source lang="java"> /******************************************************************************************
MazeGen.java - Random Maze generator Version 1.0 www.mazeworks.com Copyright (c) 2002 Robert Kirkland All Rights Reserved.
Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, provided that the above copyright notice and this permission notice appear in all copies of the Software and that both the above copyright notice and this permission notice appear in supporting documentation.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS. IN NO EVENT SHALL THE COPYRIGHT HOLDER INCLUDED IN THIS NOTICE BE LIABLE FOR ANY CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
Except as contained in this notice, the name of the copyright holder shall not be used in advertising or otherwise to promote the sale, use or other dealings in this Software without prior written authorization of the copyright holder.
- /
import java.applet.* ; import java.awt.* ; import java.util.* ;
/******** MAZEGEN ********
main class; initializes applet panel, controls execution thread, handles UI events
- /
public class MazeGen extends Applet implements Runnable {
public String getAppletInfo() {
return "MazeGen 1.0 - Copyright (c) 2002 Robert Kirkland"; }
static final Color wallColor=Color.white,
pathColor=Color.yellow,
backColor=Color.lightGray,
startColor=Color.green,
endColor=Color.red,
frameColor=Color.gray,
bkgrndColor=Color.darkGray,
panelColor=Color.lightGray,
appletColor=Color.white ;
static final int mcWidth=410, mcHeight=310 ;
private boolean isCycle, isGen, isSolve ;
private Maze mz ;
private MazeCanvas mc ;
private ControlPanel cp ;
private Thread mazeThread ;
// initialize applet layout
public void init() {
Panel p = new Panel() ;
p.setBackground(panelColor) ;
setBackground(appletColor) ;
mc = new MazeCanvas(mcWidth,mcHeight) ;
mc.resize(mcWidth,mcHeight) ;
cp = new ControlPanel(this,mc) ;
p.add(cp) ;
add(mc) ;
add(p) ;
validate() ;
isCycle = true ;
}
// start thread
public void start() {
if (mazeThread == null) {
mazeThread = new Thread(this) ;
mazeThread.start() ;
}
}
// kill thread
public void stop() {
if (mazeThread != null) {
mazeThread.stop() ;
mazeThread = null ;
}
}
// run thread
public void run() {
if (isGen) {
generate() ;
cp.setGenEnable(true) ;
cp.setSolveEnable(true) ;
isGen = false ;
} else if (isSolve) {
mz.solveMaze() ;
isSolve = false ;
} else
while(isCycle) {
generate() ;
sleep(2000) ;
mz.solveMaze() ;
sleep(3000) ;
}
System.gc() ;
}
void generate() {
switch(cp.getAlgorithm()) {
case 0: mz = new MazeDFS(cp.getDim(),mc,cp,this) ; break ;
case 1: mz = new MazePrim(cp.getDim(),mc,cp,this) ; break ;
case 2: mz = new MazeKruskal(cp.getDim(),mc,cp,this) ; break ;
}
}
// UI event handlers
void startGen() {
stop() ;
isGen = true ;
cp.setGenEnable(false) ;
cp.setSolveEnable(false) ;
start() ;
}
void startSolve() {
stop() ;
isSolve = true ;
cp.setSolveEnable(false) ;
start() ;
}
void startCycle() {
stop() ;
isCycle = true ;
cp.setCycleLabel("STOP CYCLE") ;
cp.setGenEnable(false) ;
cp.setSolveEnable(false) ;
start() ;
}
void stopCycle() {
isCycle = false ;
cp.setCycleLabel("CYCLE") ;
cp.setGenEnable(true) ;
stop() ;
}
void sleep(int ms) {
try { Thread.currentThread().sleep(ms) ; }
catch (InterruptedException e) {}
}
}
/******** MAZE ********
base class; initializes maze cells
- /
abstract class Maze {
static final int
NORTH=0, N_WALL=0x01, N_BORDER=0x10, N_PATH=0x100, CN_PATH=0x1100,
EAST =1, E_WALL=0x02, E_BORDER=0x20, E_PATH=0x200, CE_PATH=0x1200,
SOUTH=2, S_WALL=0x04, S_BORDER=0x40, S_PATH=0x400, CS_PATH=0x1400,
WEST =3, W_WALL=0x08, W_BORDER=0x80, W_PATH=0x800, CW_PATH=0x1800,
ALL_WALLS=0x0F, C_PATH=0x1000,
N_BACK=0x10000, CN_BACK=0x110000,
E_BACK=0x20000, CE_BACK=0x120000,
S_BACK=0x40000, CS_BACK=0x140000,
W_BACK=0x80000, CW_BACK=0x180000,
C_BACK=0x100000 ;
protected Point startPt, endPt ;
protected int m[][], stack[], stackPtr, cols, rows, totalCells ;
MazeCanvas mc ;
ControlPanel cp ;
MazeGen mg ;
// constructor
Maze(Dimension d,MazeCanvas mc,ControlPanel cp,MazeGen mg) {
this.mc = mc ; this.cp = cp ; this.mg = mg ;
cols = d.width ; rows = d.height ;
totalCells = cols * rows ;
stack = new int[totalCells] ;
// initialize maze array - all walls up, set borders
m = new int[cols][rows] ;
for (int i=0; i<cols; i++) {
for (int j=0; j<rows; j++) {
m[i][j] |= ALL_WALLS ;
if (j==0) m[i][0] |= N_BORDER ;
if (i==(cols-1)) m[i][j] |= E_BORDER ;
if (j==(rows-1)) m[i][j] |= S_BORDER ;
if (i==0) m[0][j] |= W_BORDER ;
}
}
// draw the grid
if (cp.isShowGen()) {
mc.drawGrid(this) ;
mg.sleep(500) ;
}
}
void setStartEnd() {
// start and end points in opposite corners
switch (randomInt(4)) {
case 0: startPt = new Point(0,0) ;
endPt = new Point(cols-1,rows-1) ;
break ;
case 1: startPt = new Point(cols-1,0) ;
endPt = new Point(0,rows-1) ;
break ;
case 2: startPt = new Point(cols-1,rows-1) ;
endPt = new Point(0,0) ;
break ;
case 3: startPt = new Point(0,rows-1) ;
endPt = new Point(cols-1,0) ;
break ;
}
}
void solveMaze() {
int direction[]=new int[4], candidates=0, choice=0 ;
int x=startPt.x, y=startPt.y ;
stackPtr = 0 ;
m[x][y] |= C_PATH ;
while ((x!=endPt.x)||(y!=endPt.y)) {
candidates = 0 ;
// first check for walls, then see if we've been here before
if ( ((m[x][y]&N_WALL)==0)&&((m[x][y-1]&C_PATH)==0)&&
((m[x][y-1]&C_BACK)==0) ) direction[candidates++] = NORTH ;
if ( ((m[x][y]&E_WALL)==0)&&((m[x+1][y]&C_PATH)==0)&&
((m[x+1][y]&C_BACK)==0) ) direction[candidates++] = EAST ;
if ( ((m[x][y]&S_WALL)==0)&&((m[x][y+1]&C_PATH)==0)&&
((m[x][y+1]&C_BACK)==0) ) direction[candidates++] = SOUTH ;
if ( ((m[x][y]&W_WALL)==0)&&((m[x-1][y]&C_PATH)==0)&&
((m[x-1][y]&C_BACK)==0) ) direction[candidates++] = WEST ;
if (candidates != 0) {
// choose a direction at random
choice = direction[randomInt(candidates)] ;
stack[stackPtr++] = choice ;
switch (choice) {
// set path, change current cell
case NORTH: m[x][y--] |= N_PATH ;
m[x][y] |= CS_PATH ;
break ;
case EAST: m[x++][y] |= E_PATH ;
m[x][y] |= CW_PATH ;
break ;
case SOUTH: m[x][y++] |= S_PATH ;
m[x][y] |= CN_PATH ;
break ;
case WEST: m[x--][y] |= W_PATH ;
m[x][y] |= CE_PATH ;
break ;
}
// draw path into new cell
if (cp.isShowSolve()) {
mc.drawSolve(x,y,choice,mg.pathColor,this) ;
mg.sleep(cp.getSolveDelay()) ;
}
}
else {
// nowhere to go, back up and draw backtrack
choice = stack[--stackPtr] ;
if (cp.isShowSolve()) {
mc.drawSolve(x,y,choice,
cp.isShowBack()?mg.backColor:mg.bkgrndColor,this) ;
mg.sleep(cp.getSolveDelay()) ;
}
switch (choice) {
// switch off path, set backpath, change current cell
case NORTH: m[x][y] &= ~CS_PATH ;
m[x][y] |= CS_BACK ;
m[x][++y] &= ~N_PATH ;
m[x][y] |= N_BACK ;
break ;
case EAST: m[x][y] &= ~CW_PATH ;
m[x][y] |= CW_BACK ;
m[--x][y] &= ~E_PATH ;
m[x][y] |= E_BACK ;
break ;
case SOUTH: m[x][y] &= ~CN_PATH ;
m[x][y] |= CN_BACK ;
m[x][--y] &= ~S_PATH ;
m[x][y] |= S_BACK ;
break ;
case WEST: m[x][y] &= ~CE_PATH ;
m[x][y] |= CE_BACK ;
m[++x][y] &= ~W_PATH ;
m[x][y] |= W_BACK ;
break ;
}
}
// redraw squares if we're near the start
if ((stackPtr==1)&&cp.isShowSolve()) mc.drawStartEnd(startPt,endPt) ;
}
// if we've been updating the screen, just redraw the squares
// again to make sure they look nice. Otherwise it's time to
// draw the solution path we just calculated
if (cp.isShowSolve()) mc.drawStartEnd(startPt,endPt) ;
else mc.drawPath(cp.isShowBack(),this) ;
}
int getCols() { return cols ; }
int getRows() { return rows ; }
int getCell(int i,int j) { return m[i][j] ; }
Point getStart() { return startPt ; }
Point getEnd() { return endPt ; }
int randomInt(int n) { return (int)(n*Math.random()) ; }
abstract void setWalls() ;
}
/******** MAZE DFS ********
creates maze using Depth-First Search algorithm
- /
final class MazeDFS extends Maze {
// constructor
MazeDFS(Dimension d,MazeCanvas mc,ControlPanel cp,MazeGen mg) {
super(d,mc,cp,mg) ;
// run the algorithm, set start/end
setWalls() ;
setStartEnd() ;
// draw the new maze if we haven't yet
if (!cp.isShowGen()) mc.drawMaze(this) ;
// or just the start/end squares
else mc.drawStartEnd(startPt,endPt) ;
}
void setWalls() {
int direction[]=new int[4], visited=0, candidates=0, choice=0 ;
// random starting point
int x=randomInt(cols), y=randomInt(rows) ;
stackPtr = 0 ;
visited = 1 ;
while(visited < totalCells) {
candidates = 0;
// find all possible directions for next cell
// first look for a border, then see if all walls intact
if (((m[x][y]&N_BORDER)==0)&&((m[x][y-1]&ALL_WALLS)==ALL_WALLS))
direction[candidates++] = NORTH ;
if (((m[x][y]&E_BORDER)==0)&&((m[x+1][y]&ALL_WALLS)==ALL_WALLS))
direction[candidates++] = EAST ;
if (((m[x][y]&S_BORDER)==0)&&((m[x][y+1]&ALL_WALLS)==ALL_WALLS))
direction[candidates++] = SOUTH ;
if (((m[x][y]&W_BORDER)==0)&&((m[x-1][y]&ALL_WALLS)==ALL_WALLS))
direction[candidates++] = WEST ;
if (candidates != 0) {
// save current cell, choose a direction at random
choice = direction[randomInt(candidates)] ;
stack[stackPtr++] = choice ;
// erase wall in selected direction from maze drawing
if (cp.isShowGen()) {
mc.drawGen(x,y,choice,this) ;
mg.sleep(cp.getGenDelay()) ;
}
switch (choice) {
// knock down walls and make new cell the current cell
case NORTH: m[x][y] &= ~N_WALL ;
m[x][--y] &= ~S_WALL ;
break ;
case EAST: m[x][y] &= ~E_WALL ;
m[++x][y] &= ~W_WALL ;
break ;
case SOUTH: m[x][y] &= ~S_WALL ;
m[x][++y] &= ~N_WALL ;
break ;
case WEST: m[x][y] &= ~W_WALL ;
m[--x][y] &= ~E_WALL ;
break ;
}
visited++ ;
}
else {
// nowhere to go, back up to previous cell
switch (stack[--stackPtr]) {
// change current cell
case NORTH: y++ ; break ;
case EAST: x-- ; break ;
case SOUTH: y-- ; break ;
case WEST: x++ ; break ;
}
}
}
}
} /******** MAZE PRIM ********
creates maze using Prim's algorithm
- /
final class MazePrim extends Maze {
// constructor
MazePrim(Dimension d,MazeCanvas mc,ControlPanel cp,MazeGen mg) {
super(d,mc,cp,mg) ;
// run the algorithm, set start/end
setWalls() ;
setStartEnd() ;
// draw the new maze if we haven't yet
if (!cp.isShowGen()) mc.drawMaze(this) ;
// or just the start/end squares
else mc.drawStartEnd(startPt,endPt) ;
}
void setWalls() {
Vector out=new Vector(totalCells) ;
Vector frontier=new Vector(totalCells) ;
Vector in=new Vector(totalCells) ;
Point cell=null, nCell=new Point(0,0), eCell=new Point(0,0),
sCell=new Point(0,0), wCell=new Point(0,0) ;
int[] direction=new int[4] ;
int index=0, candidates=0, choice=0 ;
// initialize - all cells in Out
for (int i=0; i<cols; i++)
for (int j=0; j<rows; j++) out.addElement(new Point(i,j)) ;
// choose starting cell at random, move to In
index = randomInt(totalCells) ;
cell = (Point)out.elementAt(index) ;
moveCell(out,in,index) ;
// move starting cell's neighbors to Frontier
if (cell.x>0)
moveCell(out,frontier,out.indexOf(new Point(cell.x-1,cell.y))) ;
if (cell.y>0)
moveCell(out,frontier,out.indexOf(new Point(cell.x,cell.y-1))) ;
if (cell.x<(cols-1))
moveCell(out,frontier,out.indexOf(new Point(cell.x+1,cell.y))) ;
if (cell.y<(rows-1))
moveCell(out,frontier,out.indexOf(new Point(cell.x,cell.y+1))) ;
// the loop
while (!frontier.isEmpty()) {
// move random cell from Frontier to In
index = randomInt(frontier.size()) ;
cell = (Point)frontier.elementAt(index) ;
moveCell(frontier,in,index) ;
// move cell's neighbors from Out to Frontier
if (cell.x>0) {
wCell.x = cell.x - 1 ; wCell.y = cell.y ;
moveCell(out,frontier,out.indexOf(wCell)) ;
}
if (cell.y>0) {
nCell.x = cell.x ; nCell.y = cell.y - 1 ;
moveCell(out,frontier,out.indexOf(nCell)) ;
}
if (cell.x<(cols-1)) {
eCell.x = cell.x + 1 ; eCell.y = cell.y ;
moveCell(out,frontier,out.indexOf(eCell)) ;
}
if (cell.y<(rows-1)) {
sCell.x = cell.x ; sCell.y = cell.y + 1 ;
moveCell(out,frontier,out.indexOf(sCell)) ;
}
// find all neighbors of cell in In
candidates = 0 ;
if (cell.x>0)
if (in.indexOf(wCell)>=0) direction[candidates++] = WEST ;
if (cell.y>0)
if (in.indexOf(nCell)>=0) direction[candidates++] = NORTH ;
if (cell.x<(cols-1))
if (in.indexOf(eCell)>=0) direction[candidates++] = EAST ;
if (cell.y<(rows-1))
if (in.indexOf(sCell)>=0) direction[candidates++] = SOUTH ;
// choose one at random
choice = direction[randomInt(candidates)] ;
// erase wall between the cells from maze drawing
if (cp.isShowGen()) {
mc.drawGen(cell.x,cell.y,choice,this) ;
mg.sleep(cp.getGenDelay()) ;
}
switch (choice) {
// knock down the wall
case NORTH: m[cell.x][cell.y] &= ~N_WALL ;
m[cell.x][cell.y-1] &= ~S_WALL ;
break ;
case EAST: m[cell.x][cell.y] &= ~E_WALL ;
m[cell.x+1][cell.y] &= ~W_WALL ;
break ;
case SOUTH: m[cell.x][cell.y] &= ~S_WALL ;
m[cell.x][cell.y+1] &= ~N_WALL ;
break ;
case WEST: m[cell.x][cell.y] &= ~W_WALL ;
m[cell.x-1][cell.y] &= ~E_WALL ;
break ;
}
}
}
void moveCell(Vector from, Vector to, int index) {
if (index!=-1) {
to.addElement((Point)from.elementAt(index)) ;
from.removeElementAt(index) ;
}
}
} /******** MAZE KRUSKAL ********
creates maze using Kruskal's algorithm
- /
final class MazeKruskal extends Maze {
// 1D array of cells' equivalence classes for union-find private int uf[]=new int[totalCells] ;
// constructor
MazeKruskal(Dimension d,MazeCanvas mc,ControlPanel cp,MazeGen mg) {
super(d,mc,cp,mg) ;
// run the algorithm, set start/end
setWalls() ;
setStartEnd() ;
// draw the new maze if we haven't yet
if (!cp.isShowGen()) mc.drawMaze(this) ;
// or just the start/end squares
else mc.drawStartEnd(startPt,endPt) ;
}
void setWalls() {
// for the walls, first two ints are the cell, third is direction
int walls[][]=new int[(totalCells*2)-cols-rows][3], wallsPtr=0 ;
int index=0, visited=1, direction=0, root1=0, root2=0 ;
int x1=0, y1=0, x2=0, y2=0 ;
for (int i=0; i<cols; i++) {
for (int j=0; j<rows; j++) {
// all cells in their own equivalence class
uf[(j*cols)+i] = -1 ;
// add all interior walls (only need N and W for each cell)
if (i!=0) {
walls[wallsPtr][0] = i ;
walls[wallsPtr][1] = j ;
walls[wallsPtr++][2] = WEST ;
}
if (j!=0) {
walls[wallsPtr][0] = i ;
walls[wallsPtr][1] = j ;
walls[wallsPtr++][2] = NORTH ;
}
}
}
while (visited < totalCells) {
// choose cell wall at random
index = randomInt(wallsPtr--) ;
x1 = walls[index][0] ;
y1 = walls[index][1] ;
direction = walls[index][2] ;
// remove wall from array
if (index!=wallsPtr)
for (int i=0; i<3; i++) walls[index][i] = walls[wallsPtr][i] ;
// find cell on other side of the wall
if (direction==NORTH) { x2 = x1 ; y2 = y1 - 1 ; }
else { x2 = x1 - 1 ; y2 = y1 ; }
// find roots, converting to 1D array
root1 = find(x1+(y1*cols)) ;
root2 = find(x2+(y2*cols)) ;
// are the cells in the same class?
if (root1 != root2) {
// no - connect the two trees, bump the counter
union(root1,root2) ;
visited++ ;
// and knock down the wall
if (direction == NORTH) {
m[x1][y1] &= ~N_WALL ;
m[x2][y2] &= ~S_WALL ;
}
else {
m[x1][y1] &= ~W_WALL ;
m[x2][y2] &= ~E_WALL ;
}
// erase wall from maze drawing
if (cp.isShowGen()) {
mc.drawGen(x1,y1,direction,this) ;
mg.sleep(cp.getGenDelay()) ;
}
}
}
}
int find(int n) {
// recursive find with path compression
if (uf[n]<0) return n ; // at root
return uf[n]=find(uf[n]) ;
}
void union(int r1,int r2) {
// union-by-size
if (uf[r1]<=uf[r2]) {
uf[r1] += uf[r2] ; // add size of r2 to r1
uf[r2] = r1 ; // r2 points to r1
}
else {
uf[r2] += uf[r1] ;
uf[r1] = r2 ;
}
}
} /******** MAZE CANVAS ********
draws the maze using double buffer
- /
final class MazeCanvas extends Canvas {
static final int BORDER=10, MAX_CELL_SIZE=20 ;
private int width, height, mzWidth, mzHeight, cellSize,
wOffset, hOffset, rows, cols, pathSize,
nwPathOffset, sePathOffset ;
Image bufferImage ;
Graphics buffer ;
MazeGen mg ;
MazeCanvas(int mcw,int mch) {
width = mcw ; height = mch ;
}
private void drawInit(Maze mz) {
cols = mz.getCols() ; rows = mz.getRows() ;
cellSize = (int)Math.min(MAX_CELL_SIZE,
Math.min((width-BORDER)/cols,(height-BORDER)/rows)) ;
mzWidth = cellSize * cols ;
mzHeight = cellSize * rows ;
wOffset = (int)((width-mzWidth)/2) ;
hOffset = (int)((height-mzHeight)/2) ;
pathSize = (int)(cellSize/2)-1 ;
nwPathOffset = (int)((cellSize-pathSize)/2) ;
sePathOffset = cellSize - pathSize - nwPathOffset ;
if (buffer==null) {
bufferImage = createImage(width,height) ;
buffer = bufferImage.getGraphics() ;
}
// draw background
buffer.setColor(mg.appletColor);
buffer.fillRect(0,0,width,height) ;
buffer.setColor(mg.bkgrndColor);
buffer.fillRect(wOffset,hOffset,mzWidth,mzHeight) ;
// draw outer maze frame
buffer.setColor(mg.frameColor);
buffer.draw3DRect(wOffset-2, hOffset-2, mzWidth+4, mzHeight+4, true) ;
buffer.drawRect(wOffset-1, hOffset-1, mzWidth+2, mzHeight+2) ;
}
// draw full generated maze with start and end points
// called if Show Gen off
void drawMaze(Maze mz) {
drawInit(mz) ;
buffer.setColor(mg.wallColor);
for (int i=0; i<cols; i++) {
for (int j=0; j<rows; j++) {
// only drawing North and West walls
if ( (j!=0)&&((mz.getCell(i,j)&0x01)!=0) ) {
buffer.drawLine((wOffset+(i*cellSize)),
(hOffset+(j*cellSize)),
(wOffset+((i+1)*cellSize)),
(hOffset+(j*cellSize))) ;
}
if ( (i!=0)&&((mz.getCell(i,j)&0x08)!=0) ) {
buffer.drawLine((wOffset+(i*cellSize)),
(hOffset+(j*cellSize)),
(wOffset+(i*cellSize)),
(hOffset+((j+1)*cellSize))) ;
}
}
}
// draw inner frame
buffer.setColor(mg.frameColor);
buffer.draw3DRect(wOffset, hOffset, mzWidth, mzHeight, false) ;
// draw start and end points
drawStartEnd(mz.getStart(),mz.getEnd()) ;
}
// draw grid for generating maze
// called if Show Gen on
void drawGrid(Maze mz) {
drawInit(mz) ;
buffer.setColor(mg.wallColor);
for (int i=0; i<cols-1; i++) {
buffer.drawLine((wOffset+((i+1)*cellSize)),hOffset,
(wOffset+((i+1)*cellSize)),
(hOffset+(rows*cellSize))) ;
}
for (int j=0; j<rows-1; j++) {
buffer.drawLine(wOffset,(hOffset+((j+1)*cellSize)),
(wOffset+(cols*cellSize)),
(hOffset+((j+1)*cellSize))) ;
}
// draw inner frame
buffer.setColor(mg.frameColor);
buffer.draw3DRect(wOffset, hOffset, mzWidth, mzHeight, false) ;
repaint() ;
}
// knock down a single wall in our maze drawing
// called if Show Gen on
void drawGen(int x,int y,int direction,Maze mz) {
buffer.setColor(mg.bkgrndColor);
switch(direction) {
case mz.NORTH: buffer.drawLine(
wOffset+((x*cellSize)+1),hOffset+(y*cellSize),
wOffset+((x+1)*cellSize)-1,hOffset+(y*cellSize) ) ;
break ;
case mz.EAST: buffer.drawLine(
wOffset+((x+1)*cellSize),hOffset+(y*cellSize)+1,
wOffset+((x+1)*cellSize),hOffset+((y+1)*cellSize)-1 ) ;
break ;
case mz.SOUTH: buffer.drawLine(
wOffset+(x*cellSize)+1,hOffset+((y+1)*cellSize),
wOffset+((x+1)*cellSize)-1,hOffset+((y+1)*cellSize) ) ;
break ;
case mz.WEST: buffer.drawLine(
wOffset+(x*cellSize),hOffset+(y*cellSize)+1,
wOffset+(x*cellSize),hOffset+((y+1)*cellSize)-1 ) ;
break ;
}
repaint() ;
}
// draw the colorful start and end squares
void drawStartEnd(Point startPt,Point endPt) {
buffer.setColor(mg.startColor) ;
buffer.fillRect((wOffset+(startPt.x*cellSize)+1),
(hOffset+(startPt.y*cellSize)+1),
(cellSize-2),(cellSize-2)) ;
buffer.setColor(mg.endColor) ;
buffer.fillRect((wOffset+(endPt.x*cellSize)+1),
(hOffset+(endPt.y*cellSize)+1),
(cellSize-2),(cellSize-2)) ;
repaint() ;
}
// draw full solution path with or without backtracks
// called if Show Solve off
void drawPath(boolean showBack,Maze mz) {
int cell = 0 ;
for (int i=0; i<cols; i++) {
for (int j=0; j<rows; j++) {
cell = mz.getCell(i,j) ;
// check for path first, only Center, N and W needed
// since we'll draw N and W paths into the next cell
buffer.setColor(mg.pathColor) ;
if ((cell&mz.C_PATH)!=0) {
buffer.fillRect(
(wOffset+(i*cellSize)+nwPathOffset),
(hOffset+(j*cellSize)+nwPathOffset),
pathSize,pathSize) ;
}
if ((cell&mz.N_PATH)!=0) {
buffer.fillRect(
(wOffset+(i*cellSize)+nwPathOffset),
(hOffset+(j*cellSize)-sePathOffset),
pathSize,sePathOffset+nwPathOffset) ;
}
if ((cell&mz.W_PATH)!=0) {
buffer.fillRect(
(wOffset+(i*cellSize)-sePathOffset),
(hOffset+(j*cellSize)+nwPathOffset),
sePathOffset+nwPathOffset,pathSize) ;
}
if (showBack) {
// same deal for backtracks
buffer.setColor(mg.backColor) ;
if ((cell&mz.C_BACK)!=0) {
buffer.fillRect(
(wOffset+(i*cellSize)+nwPathOffset),
(hOffset+(j*cellSize)+nwPathOffset),
pathSize,pathSize) ;
}
if ((cell&mz.N_BACK)!=0) {
buffer.fillRect(
(wOffset+(i*cellSize)+nwPathOffset),
(hOffset+(j*cellSize)-sePathOffset),
pathSize,sePathOffset+nwPathOffset) ;
}
if ((cell&mz.W_BACK)!=0) {
buffer.fillRect(
(wOffset+(i*cellSize)-sePathOffset),
(hOffset+(j*cellSize)+nwPathOffset),
sePathOffset+nwPathOffset,pathSize) ;
}
}
}
}
// redraw start and end points
drawStartEnd(mz.getStart(),mz.getEnd()) ;
}
// draw next cell (or backtrack cell) of solution path
// called if Show Solve on
void drawSolve(int x,int y,int direction,Color c,Maze mz) {
buffer.setColor(c) ;
// draw center
buffer.fillRect((wOffset+(x*cellSize)+nwPathOffset),
(hOffset+(y*cellSize)+nwPathOffset),
pathSize,pathSize) ;
switch(direction) {
case mz.NORTH: buffer.fillRect(
(wOffset+(x*cellSize)+nwPathOffset),
(hOffset+(y*cellSize)+nwPathOffset+pathSize),
pathSize,sePathOffset+nwPathOffset) ;
break ;
case mz.EAST: buffer.fillRect(
(wOffset+(x*cellSize)-sePathOffset),
(hOffset+(y*cellSize)+nwPathOffset),
sePathOffset+nwPathOffset,pathSize) ;
break ;
case mz.SOUTH: buffer.fillRect(
(wOffset+(x*cellSize)+nwPathOffset),
(hOffset+(y*cellSize)-sePathOffset),
pathSize,sePathOffset+nwPathOffset) ;
break ;
case mz.WEST: buffer.fillRect(
(wOffset+(x*cellSize)+nwPathOffset+pathSize),
(hOffset+(y*cellSize)+nwPathOffset),
sePathOffset+nwPathOffset,pathSize) ;
break ;
}
repaint() ;
}
public void paint(Graphics g) { update(g) ; }
public void update(Graphics g) {
if (bufferImage!=null) g.drawImage(bufferImage,0,0,this) ;
}
}
/******** CONTROL PANEL ********
the UI components
- /
final class ControlPanel extends Panel {
static final int MIN_CELLS=3, MAX_W_CELLS=50, MAX_H_CELLS=50,
MAX_DELAY=500, MIN_DELAY=5 ;
private int rows=25, cols=25, genDelay=50, solveDelay=50 ;
private Button bGen, bSolve, bCycle ;
private Button bRowsPlus, bRowsMinus, bColsPlus, bColsMinus ;
private TextField tfRows, tfCols ;
private Checkbox cbShowGen, cbShowSolve, cbShowBack ;
private Choice cAlgorithm ;
private Scrollbar sbGenSpeed, sbSolveSpeed ;
private Font monoFont = new Font("Courier", Font.BOLD, 12) ;
private Font textFont = new Font("Helvetica", Font.PLAIN, 12) ;
private Font boldFont = new Font("Helvetica", Font.BOLD, 12) ;
private Panel rowsPanel, colsPanel, rowsBtnPanel, colsBtnPanel ;
private MazeGen mg ;
private MazeCanvas mc ;
private Panel p = new Panel() ;
ControlPanel(MazeGen mg,MazeCanvas mc) {
this.mg = mg ; this.mc = mc ;
setLayout(new GridLayout(11,1,0,3)) ;
setFont(textFont) ;
// first set up the dimension controls
rowsBtnPanel = new Panel() ;
rowsBtnPanel.setForeground(mg.appletColor) ;
colsBtnPanel = new Panel() ;
colsBtnPanel.setForeground(mg.appletColor) ;
rowsBtnPanel.setLayout(new GridLayout(1,2)) ;
colsBtnPanel.setLayout(new GridLayout(1,2)) ;
rowsBtnPanel.add(bRowsMinus = new Button("-")) ;
rowsBtnPanel.add(bRowsPlus = new Button("+")) ;
rowsBtnPanel.validate() ;
colsBtnPanel.add(bColsMinus = new Button("-")) ;
colsBtnPanel.add(bColsPlus = new Button("+")) ;
colsBtnPanel.validate() ;
rowsPanel = new Panel() ;
rowsPanel.setFont(monoFont) ;
rowsPanel.setLayout(new BorderLayout(2,0)) ;
rowsPanel.add("West",new Label("H")) ;
rowsPanel.add("Center",tfRows = new TextField(3)) ;
rowsPanel.add("East",rowsBtnPanel) ;
rowsPanel.validate() ;
colsPanel = new Panel() ;
colsPanel.setFont(monoFont) ;
colsPanel.setLayout(new BorderLayout(2,0)) ;
colsPanel.add("West",new Label("W")) ;
colsPanel.add("Center",tfCols = new TextField(3)) ;
colsPanel.add("East",colsBtnPanel) ;
colsPanel.validate() ;
tfRows.setEditable(false) ;
tfCols.setEditable(false) ;
// then the scrollbars
sbGenSpeed = new Scrollbar(Scrollbar.HORIZONTAL,
(MAX_DELAY-genDelay),0,MIN_DELAY,MAX_DELAY) ;
sbGenSpeed.setBackground(mg.panelColor) ;
sbGenSpeed.setPageIncrement((int)(MAX_DELAY/10)) ;
sbGenSpeed.setLineIncrement((int)(MAX_DELAY/100)) ;
sbSolveSpeed = new Scrollbar(Scrollbar.HORIZONTAL,
(MAX_DELAY-solveDelay),0,MIN_DELAY,MAX_DELAY) ;
sbSolveSpeed.setBackground(mg.panelColor) ;
sbSolveSpeed.setPageIncrement((int)(MAX_DELAY/10)) ;
sbSolveSpeed.setLineIncrement((int)(MAX_DELAY/100)) ;
// now add everything
add(bGen = new Button("GENERATE")) ;
bGen.setFont(boldFont) ;
add(rowsPanel) ;
add(colsPanel) ;
add(cAlgorithm = new Choice()) ;
cAlgorithm.addItem("DFS");
cAlgorithm.addItem("Prim");
cAlgorithm.addItem("Kruskal");
add(cbShowGen = new Checkbox("Show Gen")) ;
add(sbGenSpeed) ;
add(bSolve = new Button("SOLVE")) ;
bSolve.setFont(boldFont) ;
add(cbShowBack = new Checkbox("Backtracks")) ;
add(cbShowSolve = new Checkbox("Show Solve")) ;
add(sbSolveSpeed) ;
add(bCycle = new Button("STOP CYCLE")) ;
bCycle.setFont(boldFont) ;
validate() ;
// finally set controls to defaults
tfRows.setText(Integer.toString(rows)) ;
tfCols.setText(Integer.toString(cols)) ;
cbShowGen.setState(true) ;
cbShowBack.setState(true) ;
cbShowSolve.setState(true) ;
bGen.enable(false) ;
bSolve.enable(false) ;
}
boolean isShowGen() { return cbShowGen.getState() ; }
boolean isShowBack() { return cbShowBack.getState() ; }
boolean isShowSolve() { return cbShowSolve.getState() ; }
Dimension getDim() {return new Dimension(cols,rows);}
int getAlgorithm() { return cAlgorithm.getSelectedIndex() ; }
int getGenDelay() { return genDelay ; }
int getSolveDelay() { return solveDelay ; }
void setPlusMinusEnable() {
bRowsPlus.enable(rows<MAX_H_CELLS) ;
bRowsMinus.enable(rows>MIN_CELLS) ;
bColsPlus.enable(cols<MAX_W_CELLS) ;
bColsMinus.enable(cols>MIN_CELLS) ;
}
void setGenEnable(boolean b) { bGen.enable(b) ; }
void setSolveEnable(boolean b) { bSolve.enable(b) ; }
void setCycleEnable(boolean b) { bCycle.enable(b) ; }
void setCycleLabel(String s) { bCycle.setLabel(s) ; }
void setRows(int i) {
String s = Integer.toString(i) ;
if (s.length()==1) s = " " + s ;
tfRows.setText(s) ;
}
void setCols(int i) {
String s = Integer.toString(i) ;
if (s.length()==1) s = " " + s ;
tfCols.setText(s) ;
}
public boolean action(Event e,Object o) {
if ("GENERATE".equals(o)) { mg.startGen() ; }
else if ("SOLVE".equals(o)) { mg.startSolve() ; }
else if ("CYCLE".equals(o)) { mg.startCycle() ; }
else if ("STOP CYCLE".equals(o)) { mg.stopCycle() ; }
else {
if (e.target==cbShowGen) sbGenSpeed.enable(cbShowGen.getState()) ;
else if (e.target==cbShowSolve) sbSolveSpeed.enable(cbShowSolve.getState()) ;
if (e.target==bRowsPlus) setRows(++rows) ;
else if (e.target==bRowsMinus) setRows(--rows) ;
else if (e.target==bColsPlus) setCols(++cols) ;
else if (e.target==bColsMinus) setCols(--cols) ;
setPlusMinusEnable() ;
}
mc.requestFocus() ;
return true ;
}
public boolean handleEvent(Event e) {
if (e.target==sbGenSpeed) {
genDelay = MAX_DELAY - sbGenSpeed.getValue() ;
return true ;
}
else if (e.target==sbSolveSpeed) {
solveDelay = MAX_DELAY - sbSolveSpeed.getValue() ;
return true ;
}
else return super.handleEvent(e) ;
}
} </source>